Viscoelastic response of woven composite substrates

نویسندگان

  • P. Shrotriya
  • N. R. Sottos
چکیده

Micromechanical models are developed to predict the time and temperature dependent response of woven composite substrates used in multilayer printed circuit boards. In the first part of this study, the elastic–viscoelastic correspondence principle is applied to previously reported elastic micromechanical models. The time-dependent creep compliance of a particular composite substrate (7628 style fabric) is predicted and compared with experimental measurements. Several deficiencies and possible modifications to the analytical models are identified. In the second part, a finite element model is adopted to examine the influence of boundary conditions and relevant matrix properties on the composite viscoelastic response. Parametric studies reveal the importance of shifts in the relaxation spectrum local to the matrix in the high volume fraction fiber bundles and the need to account for time-dependent Poisson s ratio of the matrix. 2004 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional viscoelastic simulation of woven composite substrates for multilayer circuit boards

Viscoelastic properties of woven composite substrates are essential to design dimensionally stable multilayer printed circuit boards. Unlike most existing numerical work which rely on simplified constitutive (elastic) and geometrical models, this study involves a fully three-dimensional viscoelastic model of a plain weave composite with accurate characterization of the woven geometry. Compariso...

متن کامل

Local Time–Temperature-dependent Deformation of a Woven Composite by P. Shrotriya and N.R. Sottos

Moiré interferometry is utilized to investigate the time–temperature-dependent deformation of a woven composite substrate used in multilayer circuit board applications. Creep tests are performed at temperatures ranging from 27 to 70◦C, and the resulting longitudinal and transverse displacement fields are measured via moiré interferometry. Measured displacement fields reveal the influence of fab...

متن کامل

Meso-scale Modeling of Tension Analysis of Pure and Intra-ply Hybrid Woven Composites Using Finite Element Method

One of the key issues associated with using of composites in various applications is their tensile behavior. The tensile behavior of a composite material is strongly influenced by the properties of its constituents and their distribution. This paper focuses on gaining some insights into the tensile process of pure and hybrid woven composite reinforced with brittle and ductile yarns. For this pu...

متن کامل

Structural Analysis of Unsymmetric Laminated Composite Timoshenko Beam Subjected to Moving Load

The structural analysis of an infinite unsymmetric laminated composite Timoshenko beam over Pasternak viscoelastic foundation under moving load is studied. The beam is subjected to a travelling concentrated load. Closed form steady state solutions, based on the first-order shear deformation theory (FSDT) are developed. In this analysis, the effect of bend-twist coupling is also evaluated. Selec...

متن کامل

Mechanical Characteristics of SPG-178 Hydrogels: Optimizing Viscoelastic Properties through Microrheology and Response Surface Methodology

Background: Self-assembling peptides (SApeptides) have growing applications in tissue engineering and regenerative medicine. The application of SApeptide-based hydrogels depends strongly on their viscoelastic properties. Optimizing the properties is of importance in tuning the characteristics of the hydrogels for a variety of applications. Methods: In this study, we employed statistical modelin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004